A Domain-Specific Language for Constructing and
Reasoning About the Security of Garbled Circuits

Matthew Chan

Rohit Jha

Atyansh Jaiswal

University of California, San Diego

{mattchan,rohitjha,atjasiwa}@ucsd.edu

1. Introduction

Garbled Circuits is a cryptographic protocol which employs
idealized boolean circuits that only reveal the result of the
computation but nothing about the inputs or the intermedi-
ate results. However, despite decades of work by the crypto-
graphic community, garbled circuits remain largely a theo-
retical construction without a viable, easy-to-use implemen-
tation. In this work we present a high level language in the
form of an embedded domain specific language in Haskell
to both construct and reason about the security of garbled
circuits. Our DSL provides an easy way to express circuits
and perform secure garbling on them such that they can be
used for applications such as secure multiparty computation,
or oblivious cloud computation.

2. Attacker Model

We assume two different scenarios where secure computa-
tion using garbled circuits would be useful:

1. Cloud Computation: Alice wants to perform some com-
putation on some input and would like to use a semi-
honest cloud server to perform the computation. Alice
would then represent the function in the form of a circuit,
garble the circuit and her inputs. The garbled circuit is
then evaluated on the cloud server and the encrypted re-
sult is returned to Alice, who can then decrypt the result.
In this case, the cloud server would be unable to learn
anything about Alices secret inputs, or the circuit inter-
nals.

2. Two-Party Computation: Alice and Bob want to perform
some joint computation using their inputs, without re-
vealing anything about their own secret inputs to each
other. Alice also possesses the function for the computa-
tion which is also secret. Alice would then represent the
function in the form of a circuit, garble the circuit and her
input. Alice would then send the garbled values to Bob.
Bob obtains the garbled value for his input from Alice
through oblivious transfer. Bob then evaluates the garbled
circuit and shares the result with Alice. Apart from Bob
and Alice keeping their values secret from each other,
an adversary seeing any communication between the two

would not be able to learn anything about their inputs. We
assume that Alice and Bob are semi-honest parties.

3. Garbled Circuits

In this section, we provide a high-level description of the
process of garbling circuits. We explain how the garbling
is performed and how the inputs are applied to the garbled
circuit to obtain the final result.

In a two-party garbling process, the inputs from both
parties are encrypted by the party that performs the garbling
process. For this, the second party has to send its input to
the other party and this transfer is called Oblivious Transfer,
where the other party is not aware of the other party’s actual
input. In out implementation, we do not handle Oblivious
Transfer and we refer readers to [[10] [7] [9] [2] for further
details.

Garbling of a circuit involves encrypting each of the cir-
cuit’s gates’ truth tables and permuting the rows of these
truth table, thereby ensuring that the truth tables cannot be
reverse engineered and an attacker is unaware of the circuit’s
internals. The garbling process of each gate involves four
steps, which are explained in detail in section 5. The gar-
bling of a gate returns a garbled truth table and a lookup
table with entries containing rows corresponding to the en-
crypted output and the actual Boolean output.

4. A Domain-Specific Language for
Describing Circuits

To be able to reason about the garbled circuits protocol for-
mally, we develop an embedded domain-specific language
(EDSL) of circuits in Haskell and implement garbling as
an interpreter for the language. This allows us to apply a
range of informal and formal reasoning techniques available
to the purely functional programmer to this cryptographic
problem.

A design choice is to provide a natural and flexible pro-
gramming interface for describing and modelling boolean
circuits, which suggests a shallow embedding[3]].

For example, we would like to be able to express the
circuit in Figure[T]as

circuit :: Circuit Bool
circutt a; ag bl bg = do
gateA e < and aj by
gateBoy: + and by by
gateCpoyy or gateA ,ui gateBoyy
return gateCyyy

However, there are a number of limitations to a fully shal-
low embedding, namely that because programs are repre-
sented directly in the metalanguage by their semantics, we
cannot subsequently manipulate their ASTs.

Free Monads. We implement our language by the free
monads idiom [11], which allows us to obtain a DSL for
circuits from a suitably parametric datatype of single logic
gates for free. Intuitively, the type parameter a corresponds
to the return type of the monad, and the continuations at each
nonterminal node correspond to a monadic action to be ex-
ecuted after the node is evaluated — thus allowing Free to
traverse the structure by calling the sequence of continua-
tions, and v.v. for construction. A further convenience is that
Haskell can derive a Functor instance by parametricity[/13[],
leaving us with only a succinct definition to write:

data Gate a
= And Bool Bool (Bool — a)
| Or Bool Bool (Bool — a)
| Const Bool a
deriving Functor

type Circuit = Free Gate

While we do not take advantage of their full power, we
did find that structuring the language in this way simplifies
the construction of evaluation functions (composition of gar-
bling follows from monadic traversals), while enabling the
compositional interface we seek.

Free Applicatives. Another interesting structure to ex-
plorep_-] for the circuits DSL is the Free Applicative, which
gives an applicative for free from any functor. A conse-
quence of this is that, since applicatives have a weaker inter-
face that disallows dependence on effects, applicative struc-
tures support static analysis and inspection[6], which may
have different implications for the security of the garbled
circuits defined.

5. Garbling Truth Tables

To explain the garbling process and evaluation, we will be
using the circuit with a single logical AND gate from Figure
as the running example. The truth table for this gate is
shown in Table[]l

As mentioned in section 3, the garbling process of a gate
involves garbling the gate’s truth table in four steps [10]:

! Unfortunately instances of the free applicative are not derivable from the
free monad directly

a; ——— GA
by —
C
ag — GB
by —

Figure 1: A simple circuit

D

Figure 2: A circuit with only one AND gate

Wo
Wi

Table 1: Truth table for the AND gate

Wo
0
0
1
1

~o~o§
'—‘OOO§

Step 0: Initialization

Let W}, denote the k' wire of the circuit. For each wire
k, we generate a random permutation bit p; and two 80-bit
random keys v and vi. Using these, we calculate w) =
v9]10 & py, and wi = vi||1 @ pg.

Step 1: GTT — Garbled Truth Table

To garble the original truth table of a gate, for every wire
k we replace all the occurences of 0 with w) and 1 with
w,% This Garbled Truth Table (GTT) is shown in Table
In addition, we create a lookup table containing the values
(w?,0) and (wi,1) as rows, as shown in Table [3| for the
AND gate.

Table 2: Garbled Truth Table (GTT) for the AND gate

Wo | Wi | Wa
wy | w? | wh
w) | wi | wh
wy | w | wy
wy | wi | wy

In our implementation we encapsulate the various stateful
operations garbling requires in a monad Garbled, defined
as:

type Garbled a =

Table 3: Lookup table for the AND gate

Wy | Output
wy 0
wi 1
RandT StdGen
(StateT KeySt

(ExceptT GarbleError Identity)) a

The first step of garbling initializes the KeySt map,
which maps unique wire tags k to triples of the generated
random values (pg,vY, vi), and returns a garbled truth ta-
ble, encapsulated in the type GarbledTT. This is a pair of
a truth table with the random value substitutions (of type
Enc = Int) applied, and the translation tables.

gtt :: TT Bool — Garbled (GarbledTT Enc)

Step 2: EGTT — Encrypted Garbled Truth Table

We next encrypt all the entries of the GTT. If a row in the
GTT has values (w}, w?, wj), then the corresponding row in
EGTT will have the values (Enc(w?), Enc(w?), Enc(wf)),
where:

Enc(wy) = SHAL (w7 |i|2||y)

Enc(w) = siat(w?||jl|z]ly)

Enc(wy) = Enc(wy) ® Enc(w}) & wj

Table 4: Encrypted garbled truth table (EGTT) for the AND
gate

Wo Wi Wa
Enc(wl) | Enc(w?) | Enc(wg)
Enc(wl) | Enc(w}) | Enc(w)
Enc(w}) | Enc(w?) | Enc(w))
Enc(w}) | Enc(w}) | Enc(w})

This amounts to encrypting each row of the table in se-
quence, which due to our definition of tables requires per-
forming this operation on the transposed table. Intuitively,
this is equivalent t the following operation on gtt

egtt = transpose o mapM encryptRow o transpose

Step 3: PEGTT — Permuted Encrypted Garbled Truth
Table

According to [10], to further “garble” the truth table, we
permute the rows in EGTT based on the permute bits p; and

pj:

2 The actual function is more involved, the details of which we omit for the
sake of elegance.

1. If p;, = 1: We swap the first two rows with the last two
rows

2. If p; = 1: We swap the first and the third rows with the
second and fourth respectively

The role of these permutations is to make the position
of a certain string in a PEGTT meaningless. However, in our
current implementation, we have not followed the above two
ways, but instead randomly arranged the rows of EGTT to
get PEGTT.

Table 5: One possible permuted encrypted garbled truth table
(PEGTT) for the AND gate

Wo Wy Wy
Enc(wd) | Enc(w]) | Enc(w))
Enc(wd) | Enc(w?) | Enc(w))
Enc(w) | Enc(w}) | Enc(w})
Enc(w) | Enc(w?) | Enc(w)

This is simply a permutation of egtt, expressed asE]
pegtt = pick o permutations
Finally, the entire garbling operation is expressed as

garble ::
garble = gtt >=> egtt >=> pegtt

which takes the logical truth table of a given gate and gen-
erates a pair of the garbled truth table and the corresponding
translation tables.

We note that adding types to the mathematics helped
catch many errors, in both our understanding and implemen-
tation, as well as the mathematics described in several pa-
pers.

6. Evaluating Garbled Circuits

Evaluation of a single garbled gate is simply a sequence of
table lookups in the garbled tables, given by a function

eval :: GarbledTT HashedBS
— Bool — Bool — Maybe Bool

To evaluate a garbled gate, the inputs to the gate are first
encrypted. The gate performs the computation on these en-
crypted inputs and generates an encrypted output. This en-
crypted output is looked-up in the lookup table (that was
generated alongside the garbled truth table) and the corre-
sponding Boolean value is returned.

For example, if the two inputs to the AND gate were 0
(False) and 1 (True) on wires Wy and W7, then these input
values would be encrypted to Enc(wl) and Enc(w}). Next,
an entry corresponding to these two values is matched in the

3 Again, eliding details with bounded random number generation, etc

TT Bool — Garbled (GarbledTT HashedBS)

PEGTT and its output, Enc(w)) is returned on wire Wi.
This value is an encrypted one and the party interested in
determining the actual value decrypts this:

Dec(Enc(w))

= Enc(w)) @ Enc(wi) ® Enc(ws)

= Enc(wy) ® Enc(wy) @ Enc(w)) ® Enc(w;) & wd

= wg

The party performing the decryption has access to the
lookup table and finds out the result corresponding to w9,
which in this case is 0 (False).

When a circuit includes multiple gates with outputs of
one or more gates flowing into other gates as inputs, then the
garbling and evaluation are done for each gate individually.
After evaluating a gate, its output is decrypted before passing
to the next gate as input. Finally, the Boolean results of
the terminal gates in the circuit are returned to the parties
involved in the computation as output of the circuit.

6.1 Correctness of Garbling

The correctness of the garbling transformation can be ex-
pressed via the commutative diagram shown in Figure[3] fol-
lowing a similar definition of general compiler correctness
given by Hutton et al.[8][[L].

garble

Gate —— (PEGTT, Lookup)

ltrcmslate J/e?)(llga'rbled

TT —<*% Result

Figure 3: Commutative diagram for correctness

In Figure 3| Gate refers to the original logic gate,
which compiles to the gate’s truth table 77" and a pair
(PEGTT, Lookup) under interpretations eval o translate
and evalgerbica © garble respectively. The functions eval
and eval’ evaluate TT and (PEGTT, lookup) when pro-
vided the input values to produce the same final Boolean
result, Result.

While this holds from the mathematical definition of
garbling, proving this property by program calculation (as
demonstrated in [[12] and [[1]]) remains future work.

7. Security of Garbled Circuits

We evaluate the security of our implementation through the
security notions defined in [2]. Here, we represent our circuit
as f, garbled circuit as F', the inputs as x, encrypted inputs
as X, the output as y, the encrypted output as Y and the
decryption method d.

7.1 Privacy

A party acquiring (C, X, d) cannot learn anything impermis-
sible beyond that which is revealed by knowing just the final

result y. What is permissible to reveal is defined by a side in-
formation function ®(f). Since our implementation involves
using the free monad, we hide away much of the garbling
process and the original inputs to the gates. As a result, even
if a party accesses this garbled circuit, it is not possible for
them to inspect the internals and at every step of the garbling
process, we do not preserve the intermediate truth tables.

7.2 Obliviousness

A party acquiring (F, X), but not d, cannot learn (f,z)
from the inputs. In our implementation, d is the decryption
function combined with the lookup table. Furthermore, since
we abstract away the encryption technique and keys for
every gate, if the lookup table is not provided either, it is
not possible to recover f from F or z from X.

7.3 Authenticity

A party acquiring (F, X) cannot produce a value Y* such
that Y«! = Y, and d(Y'%)! = L. In our implementation, the
only values of Y that can be accepted for a gate are the two
values in the lookup table. Since both the keys in this lookup
table are 80 bits wide, which are generated everytime a gate
is garbled, there are 28° possible keys out of which only two
are valid. This makes it difficult to come up with a random
Y« that after decryption will exist in the lookup table.

8. Future Work

We intend to create a full secure two party communication
protocol, which would involve adding support for oblivious
transfer. This would also involve coming up with a useful
abstraction to represent communication between two parties,
and making sure that no extra information is leaked to the
adversary. One direction we were thinking was perhaps to
use session types to reason about communication security.

To be able to verify security, we want to take a similar
approach as [3]] and use refinement types to perform verifi-
cation of our protocol at the language level.

We can further implement more optimized versions of
both garbling and evaluation that have been constructed in
the past [7] [9] and verify the correctness and security of
those as well.

9. Conclusion

We have created an embedded DSL in Haskell for repre-
senting circuits that allows us to garble circuits and evalu-
ate these garbled circuits. We have proved the correctness of
our implementation — why evaluation of the garbled circuits
is equivalent to evaluation of the original circuit. We have
also tested our DSL over circuits involving single Boolean
logic gates such as the AND gate, and have found the re-
sults to be correct. Furthermore, we have explained why the
implementation of garbled circuits in our DSL provides se-
curity properties by hiding away the internals of the garbled
circuit due to the monadic representation. We believe this

to by a step towards applications such as secure multiparty
computation and oblivious cloud computation.

References

[1] P. Bahr and G. Hutton. Calculating Correct Compilers. Jour-
nal of Functional Programming, 25, Sept. 2015.

[2] M. Bellare, V. T. Hoang, and P. Rogaway. Foundations of
garbled circuits. In Proceedings of the 2012 ACM conference
on Computer and communications security, pages 784—796.

ACM, 2012.

[3] K. Bhargavan, C. Fournet, M. Kohlweiss, A. Pironti, and P.-Y.
Strub. Implementing tls with verified cryptographic security.
In Security and Privacy (SP), 2013 IEEE Symposium on,
pages 445-459. IEEE, 2013.

[4] P. Capriotti and A. Kaposi. Free applicative functors. arXiv
preprint arXiv:1403.0749, 2014.

[5] J. Gibbons and N. Wu. Folding domain-specific languages:
deep and shallow embeddings (functional pearl). In ACM
SIGPLAN Notices, volume 49, pages 339-347. ACM, 2014.

[6] M. Hauck, S. Savvides, P. Eugster, M. Mezini, and G. Sal-
vaneschi. Securescala: Scala embedding of secure computa-
tions. In Proceedings of the 2016 7th ACM SIGPLAN Sym-
posium on Scala, SCALA 2016, pages 75-84, New York,
NY, USA, 2016. ACM. ISBN 978-1-4503-4648-1. doi: 10.
1145/2998392.2998403. URL http://doi.acm.org/
10.1145/2998392.2998403.

[7] Y. Huang, D. Evans, J. Katz, and L. Malka. Faster secure two-
party computation using garbled circuits. In USENIX Security
Symposium, volume 201, 2011.

[8] G. Hutton and J. Wright. Compiling Exceptions Correctly.
In Proceedings of the 7th International Conference on Math-
ematics of Program Construction, volume 3125 of Lecture
Notes in Computer Science, Stirling, Scotland, July 2004.
Springer.

B. Kreuter, A. Shelat, and C.-H. Shen. Billion-gate secure
computation with malicious adversaries. In Presented as part
of the 21st USENIX Security Symposium (USENIX Security
12), pages 285-300, 2012.

[10] D. Malkhi, N. Nisan, B. Pinkas, Y. Sella, et al. Fairplay-
secure two-party computation system. In USENIX Security
Symposium, volume 4. San Diego, CA, USA, 2004.

[11] W. Swierstra. Data types a la carte. Journal of functional
programming, 18(04):423-436, 2008.

[12] W. Swierstra and T. Altenkirch. Beauty in the beast. In Pro-
ceedings of the ACM SIGPLAN workshop on Haskell work-
shop, pages 25-36. ACM, 2007.

[13] P. Wadler. Theorems for free! In Proceedings of the fourth
international conference on Functional programming lan-
guages and computer architecture, pages 347-359. ACM,
1989.

[9

—

http://doi.acm.org/10.1145/2998392.2998403
http://doi.acm.org/10.1145/2998392.2998403

	Introduction
	Attacker Model
	Garbled Circuits
	A Domain-Specific Language for Describing Circuits
	Garbling Truth Tables
	Evaluating Garbled Circuits
	Correctness of Garbling

	Security of Garbled Circuits
	Privacy
	Obliviousness
	Authenticity

	Future Work
	Conclusion

